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A Theoretical and Experimental Study of the Noise
Behavior of Subharmonically Injection
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Abstract—A method for the noise characterization of opti-

cally controlled subharmonically injection locked oscillators is

presented. Based on a nonlinear model of synchronized oscil-
lators, this method is used to formulate a general expression
for phase noise calculation, so that FM noise degradation of a
subharmonically synchronized LO at large-signal levels can be
predicted easily and accurately. The theoretical analysis shows
that 1) the nth-order subharmonic injection locking oscillator
is primarily locked by the nth harmonic output of an injected
signal, which is generated by the nonlinearity of the active de-
vice; 2) the minimum FM noise degradation factor of the nth
order subharmonically locked oscillator is n?> when the injec-
tion power is sufficiently strong; 3) a subharmonic injection
locking LO with low injection power, good FM noise degrada-
tion and large locking range can be designed by determining
the optimum injection power level, by selecting the optimal
nonlinear multiplication factor, and by decreasing the intrinsic
noise level of the active device. The experimental results of the
FM noise measurement of an oscillator confirmed the accuracy
of the analysis.

I. INTRODUCTION

HE NEXT generation of communication satellites will
be based on large aperture phased array antennas,
where each transmit/receive (T/R) module is interfaced to
the central processor by a fiber-optic link, which distrib-
utes reference, data, and control signal [1]. Maintaining
the phase and frequency stability of the reference signal
for establishing a coherent carrier at each active T/R mod-
ule is of great importance. To establish a coherent carrier,
the frequency reference is used to synchronize local os-
cillators through indirect subharmonic optical injection
locking techniques [2]. Because figures of merit, such as
the locking range and the FM noise degradation of the
subharmonically injection locked LO, have a great effect
on the frequency stability and the noise behavior of the
modulated carrier, it is important to analyze the subhar-
monic injection locking process quantitatively.
The analysis and the experimental verification of the
large-signal model of the subharmonically injection locked
oscillator has been reported recently by Zhang et al. [3],
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and the salient points of this analysis relevant to the noise
calculation are presented here. In terms of noise behav-
iors, the noise theory for the fundamentally synchronized
oscillator has been well studied by Kurokawa [4] in 1969,
who used the Van der Pol nonlinear equivalent circuit
model and the first order approximation to derive an ele-
gant expression of noise characteristics at a low injection
signal level. To characterize the synchronized oscillator
noise at a large injection signal level, Goedbloed and
Vlaardingerbroek [5], [7] developed a nonlinear noise
theory for IMPATT diodes in oscillators and amplifiers.
The method involves solving the nonlinear Read equation
of IMPATT for large noise-free carrier signal first, then
solving the linearized equation again for the small noise
perturbation signal. With their theory, the noise behavior
of free-running IMPATT oscillators and amplifiers can be
analyzed with good accuracy.

Schunemann [6] reported another method larger-signal
noise’ analysis that directly extends Kurokawa’s work to
the large injection level. This nonlinear model is based on
a third order Van der Pol polynomial for a negative re-
sistance oscillator. He used the describing function
method to solve the large noise-free signal response of
fundamentally injection locked oscillator. Like Goed-
bloed and Vlaardingerbroek, he also developed the level
dependent conversion matrices for linear analysis of small
noise signal on the basis of this analysis. However, all of
above works concentrate only on the fundamentally syn-
chronized oscillator, and to thie best of our knowledge, no
research work on the noise characteristics of the subhar-
monically injection locked LO has been published. Usu-
ally, a much higher injection power level is needed to ob-
tain certain locking range for subharmonic injection
locking than that required for fundamental injection lock-
ing. Thus, a means of analyzing the noise characteristics

- of the subharmonically injection locked oscillator at a

large injection power level is needed.

The theory for the noise analysis of subharmonically
injection locked LO’s at large-signal levels is developed
in this paper. In Section I, the nonlinear model for injec-
tion locked local oscillators is briefly introduced. Because
the Van der Pol equivalent circuit model representation is
not easily implemented for microwave oscillators [8], a
more suitable nonlinear model [9], [10] for subharmonic
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injection locking was employed. Also, the order of non-
linearity used to represent a nonlinear device is extended
to infinity to obtain a more general model for large injec-
tion signal levels. With this model, a noise free analysis
is done for both the large oscillation signal and the injec-
tion signal via the harmonic balance method. In Section
I11I, the method for noise characterization at large-signal
level is described. The level dependent conversion ma-
trices were developed for the small noise signal analysis
via a linear algebraic operation. The noise conversion and
the intermodulation effects on output noise could be cal-
culated easily by use of these matrices. Therefore, not
only the FM noise degradation of a subharmonic injection
locking ILO could be quantitatively analyzed, but also the
AM noise response and the conversion between AM and
FM noise could be characterized.

The theoretical results of FM noise characteristics at
large injection signal levels were verified by noise mea-
surements of a subharmonically locked oscillator at sub-
harmonic factors of 1/2, 1/3, and 1/4, and are pre-
sented in Section IV. Thus, on the basis of this noise
analysis, the optimum injection power level can be deter-
mined for a slave oscillator with small FM noise degra-
dation. Furthermore, an optimum oscillator configuration
can also be investigated for the optically controlled phased
array antenna architectures.

II. Noise-FREE LARGE SIGNAL ANALYSIS
A. Nonlinear Model for the Synchronized Oscillator

The nonlinear circuit of the oscillator, depicted in Fig.
1, is modeled as the combination of a pure nonlinear net-
work f(e) and a pure linear feedback network H(D) [9].
Here ¢; is the injected signal, u is the output signal of the
oscillator, and e, is the signal from the feedback network.
The input-output nonlinearity of the active device is rep-
resented by f(e); e.g., f(e) represents the current-voltage
characteristics for a MESFET based device. To simplify
the analysis, we express f (¢) approximated by

2.1

where ; is considered to be real for simplicity. The linear
single tuned feedback network H(D) [11] can be ex-
pressed as approximately

Hy

HD) = 2.2)

1+ j202¢

wWo
where Q is the quality factor of this linear network, and
Aw is the frequency deviation from the resonating fre-
quency wg of the feedback circuit. Because we consider
only the noise-free signal in this section, the output of this

network, e,, is desired to be a sinusoidal signal. When the
signal ¢; is injected and the oscillator is locked, the input

€ e u

fle) >

H(D)l=

Fig. 1. The conceptual diagram of the subharmonically synchronized os-
cillator.

signal e for the nonlinear network is

E .
e=¢ + ¢ =§(e"°’ + e

E jlw/n)t E_'* —fw/nyt
+ > € + 5 € (2.3)
where w = nawj, is the synchronized frequency by injec-
tion locking, and w;, is the injection frequency. The com-
plex variable E; is the injected signal, represented by the
amplitude E; and the phase ¢; n is an integer for the sub-
harmonic factor; E is the oscillation signal’s amplitude at
input port. Substituting (2.3) into (2.1), for the subhar-
monic injection at a factor of 1/n, the output of oscillator
can be expanded in a Fourier Series:

(=]
5 O,

m= —o

(2.4)

Since e, = H(D)u, finding the harmonic balance at the
fundamental frequency w will result in:

H .
E=—2— 7,
A
14,2028
o

2.5)

We can express U,, which is the signal at the locked os-
cillation frequency nw,y,, in a summation form by follow-
ing the method of the frequency domain nonlinear anal-
ysis with multiple inputs [12]:
. o = 1 N
U,=(2 X
<,=o k=0 2V L (N2 + 1)1k

oy E,~|21E2k> E

+{ 2 X : |PE™
<m=op=o 2"~y (p + n)ip! ol B 7E
- E? + higher order terms. (2.6)

where N =2j + 2k + 1and M =2m + 2p + n. In (2.6),
the first term is the oscillation signal amplitude U,,; and
the second term represents the response signal U,,,, of the
injected signal E;, when E, goes through the nonlinear net-
work together with the oscillation signal E. The above
equation can be simplified as:

Un =~ Uy + Uoum 2.7

Substituting (2.7) into (2.5) produces the following
expressions:

E = HyU,, (2.8)
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Fig. 2. Measured and calculated injection locking range (Af/f;) at sub-
harmonic factor n = 2, 3, 4, where calculation for Modell represents the
calculated results with Eq. (2.10), and calculation for Model2 represents
the predicted results with unlocked spectrum [12].
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Following the method of Daryoush [9], the subharmonic
injection locking range can be expressed in terms of Q
and w, by letting n¢p = +7/2:

A _ Yo Uoutn _ Yo P outn
0/ = = ,f——

2Q Uout 2Q P out
Clearly, the above equation is the same as Alder’s expres-
sion [13] for the fundamental injection locking range,

when the signal U, interacts with the free-running os-
cillator like an injected fundamental locking signal.

2.9)

(2.10)

B. Experimental Verification of Large-Signal Analysis

A 5 GHz local oscillator, designed and fabricated for
the examination of the subharmonic locking range and
noise characteristics, consists of a two-stage low-noise
MESFET amplifier and a dielectric resonator as linear
feedback network. The basic advantages of such an os-
cillator in a synchronized oscillator are outlined in Berceli
et al. [10]. (2.10) and Armand/Strover’s method [14],
[15] were used to predict subharmonic locking ranges at
subharmonic factors of 1/2, 1/3, and 1/4, and the re-
sults are discussed in more detail in Zhang [3]. Fig. 2

shows the comparison between the analysis and the mea-

surement results.

This nonlinear model and its large-signal analysis for
the subharmonic injection locking range calculation are
verified by the locking range measurement presented in
Fig. 2. Therefore, the subharmonic injection locking pro-
cess can be explained by. (2.10) as follows: the injection

signal goes through the nonlinear network first, then its.

nth harmonic signal is generated at the oufput port of the
nonlinear network. If the injection frequency at nwi,; =~
wg, the multiplied signal can be fed back to the nonlinear
network again through the linear tank circuit. This signal
forces the free-running oscillator to be synchronized at w

= nwj,j, the same as that in a fundamental locking. This

process was also used to explain the noise behaviors of
the subharmonically locked oscillator in the next section.

III. NoiSE ANALYSIS

The rigorous noise analysis presented here is restricted
to the noise calculation at the center of the locking range.
As a frequency detuning exists between the free-running
oscillation frequency and the injection signal, a phase shift
of +90° can be introduced [16]. Although this assump-
tion may seem restrictive, the phase error caused by shift-
ing away from the center of the locking range can be
remedied via the injection'locked PLL technique [17]. The
noise signal can be regarded as a small perturbation of a
large oscillation and the injection signal, so that the total
input signal of an active device e will be: ¢ = e + ey,
where ey is the large pure sinusoidal signal consisting of
oscillating and injecting signals, and ey is a small noise
signal. Because ey << e;, the noise response of the non-
linear network f(e) can be approximately expressed by
the derivative of f(e) in a linear form:

u, = f,(e)|e=eLeN (31)

The expression for ¢, is shown in (2.3). Substituting e,
into f (), we can express the derivative of f(e) in a Fou-
rier series shown below:

fler®) = 2 gneme/” (3.2)

(" j
gy = 5 S_W f:(eL(t))e“Jm(w/n)t d <$ t> . (3.3

The noise signal can be considered as pairs of pseudo-
sinusoids with random amplitudes and phases at the lower
and upper side-band frequencies. We use e; at (w/n) —
Q and ¢;, at (w/n) + © to denote noise from the injection
signal; ¢;at w — @ and e, at w + {} represent the feedback
fundamental noise, and ¢, e,, denote the intrinsic noise
side-band signals at the fundamental. The offset catrier
frequency of side-band noise signals is {}. Therefore, as
shown in Fig. 3, there are noise side-band signals at the
input port of the amplifier, presented as

j(w/n—Qt, j(w/n+Nt, f(lw—Qt,
ey el@/n—® D ey e/@/ D e :

w+Q)e, «— N, W+t
( ), J( )’ eouej( )

3.4

Similarly, Fig. 3 also shows that at the output port, noise
components at the fundamental frequency band are

@ + Q)1
L€

e, e e, e

3.5)

Following (3.1), we can express the output noise signal
at the fundamental frequency band by input signals in ma-

trix form:
u, 82n 80 €y + €ou

[gf-l gj:H} |:e;l;‘]
+ .
8n+1 8n-1 Ciy_

u e’ 0y

(3.6)
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) where G}, = [I — GoH] 'Gy and G, = [I — G,H]™'G,.
—> NNonllnezli(r —— Usually, the oscillator noise is described in terms of FM
e etwor U ~ and AM noise, so the two side-band noise signals have to

be transformed into AM and FM noise in terms of vector
algebra as [5]:

w A/ u,
11
\ uy = [”AM} - [ } [”’} =Au  (3.11)
Upy —1 1 u,

0-Q o otQ
inj
. . . . €am 1 1) | ey
Fig. 3. Noise spectrum of input and output of nonlinear network expressed ey = = = Aei (3.12)
in terms of an equivalent spectrum of sinusoidal noise signals. ey -1 1 €

Through the transfer function of the feedback network in  The measurable output AM and FM noise power level can
(2.2), the feedback noise signal can be related to the out- be given by using these expressions:
put noise signal:

—Q) - -1
o [ <1 _ j20 u) 0 .
! on U
{ J = 1 [ } 3.7
€, , @+ D) — w\ uy,
0 H, <1 +j20 u—‘j
Wo
We -can rewrite (3.6) and (3.7) in vector algebraic form
respectively: 5 ™
(u ty { | aml uAMuFM:|
5 u = —
u = Goe + e) + Gye, (3.8) N imttpy  Jipm]?
' 2
h e 0
where :%AG(,)|:|O| .zi'G6+A++AG;A—1
* * 0 |eO|
u= v 6 = ; le; aml 0 _
U € - [ —— A TGTAT (3,13
0 |e:pm]
G — g8 & ] _ 81 &+ Here, we assume no correlation between input and intrin-
0 & gJ Suil 8o sic noise. The superscript ‘+° denotes the Hermitian ma-
trix; |eo|” is the equivalent noise level of amplifier;
and le;am|® and |e;py|* are the AM noise and FM noise level
of the signal from master oscillator. Using the expression
e = Hu (3.9) in (2.1) for nonlinear network and following the same
rules of Bussagang et al. [12] in (2.6), we can express the
where
-0 — -1 ;
H, <1 — 20 (L_)_ﬂ> 0
Wo
H = ]
+ Q) — -
0 H, <1 +j20@ D @ w) “’°>
' 0

Here, G; is referred to as the conversion matrix because elements in G, in terms of nonlinear parameter as

it can convert the side-band signal from one frequency 2 & NITYIE |2 g2

band to another. g =T+ 2 —
Substituting (3.9) into (3.8), we can show the relation- 7=0k=0 27(j)°(kY

ship between the injected noise and output noise of an. S e M, E|E|¥E™!

oscillator as + 22 T

m=0p=-02"ml(m + DI(p + n)lp!
u=[I - GH] '[Gye + G,e] = Giey + Gle; (3.10) + higher order terms (3.14)
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(3.16)

8o =

oo

+ higher order terms (3.17)

where I'; = (i + 1)a; . in the above expressions, and M
and N are equal to the sum of the exponents of E and Ei.
For example, N =2j + 2kand M =2m + 2p + n + 1
in (3.14). Those higher order terms are at least n order
higher than the first and the second terms in above equa-
tions, therefore, we can neglect the contribution from
these higher order terms. If the injected AM noise level
is much smaller than the FM noise level and the synchro-
nized frequency is in the center of the locking range, then
gij is a real number because ¢ = 0, and the following
expression for the output FM noise power level can be
derived from the noise matrix in (3.13):

(8n-1 — gn+1)2|e}=M|2 + %(go = gzn)ze%
(1 — (8 — gm)Hy® + 202/ wp)’
(3.18)

Substituting (3.14)-(3.17), (2.8) and (2.10) into (3.18),
a simple expression for the output FM Noise/Carrier ratio
£, /,(Q) of a nth order subharmonically locked LO can be
formulated in terms of the injection FM Noise/Carrier ra-
tio £,;(2) and the intrinsic noise e,:

‘uFMlz =

Py

2
Wo
Awl/,,n £mJ(Q) + <2Qb>

Q? +Aw1/,,

Out

£/, = (3.19)

where Py is the equivalent intrinsic noise power density
at the input port, P, is the output power of the oscillator,
and b is the coupling factor of the feedback network [10].
Clearly, the FM noise degradation factor will be r* when
the injection locking range is large enough. This result
corresponds to the empirically observed relation of 20
Logo (n) for the FM noise degradation in the logarithm
[1]. The second term in the numerator of (3.19) is the
variance of the free-running oscillation frequency caused
by the noise power in 1 Hz bandwidth. Therefore, we use

a AQ) to represent this frequency jittering:

wo [Py

AQ =
20b N Poy

(3.20)

We may notice that the above equation is similar to the
expression for the injection locking range calculation;
thus, it can be considered as an average of the frequency
shift by the average noise power within 1 Hz through the
locking process.

While the synchronized frequency is not in the center
of locking range, namely, ¢ # 0, the following expres-
sion for the subharmonically locked LO FM noise can be
deduced by omitting the second term in (3.14) and (3.17)
for an input power that is not too large:

cos? (n¢) Awl/,n’£,(Q) + AQ?
0’ + cos’ (nd) Awi/,

£i/n(@) = (3-21)

This deduction may not be very rigorous, but for an in-
jection signal that is not too large, (3.21) compares well
with the empirical method used in [16]. Clearly, for the
fundamental injection locking (n = 1), the above expres-
sion is the same as the FM noise expression for the fun-
damental synchronization in [4]. For subharmonic injec-
tion locking, injected FM noise converted by the nonlinear
network to FM noise in the fundamental band suffers a
degradation factor of n?. This converted noise then reacts
with the free-running oscillator like an injected funda-
mental FM noise similar to that shown in (2.10) for a
subharmonic injection locking range calculation, and this
proves the explanation for subharmonic injection locking
stated in last section. ‘

Taking into account the near-carrier noise of a MES-
FET based oscillator, we can s1mp1y replace e2in (3.19)
and (3.21) with (1 + w./Q)e?2 [4], [18]

Awt/,n Ey(@) + <1 + Q) AQ?

£, ) = (3.22)

Q° + Aw%/,,

where w, is the corner frequency for 1 /f near-carrier noise
of the device.

IV. FM NoOISE EXPERIMENTAL VERIFICATION AND
DiscussioN

The DR oscillator at 5 GHz [3] with an output power
of 13 dBm was used for the FM noise measurement. A
HP8340B synthesizer was used to provide injection sig-
nal, and the FM noise was monitored by the Tektronix
2756p spectrum analyzer.

First, the phase noise of the free-running oscillator was
measured at different offset carrier frequencies . Using
the formula for the free-running oscillator derived from
(3.22), we calculated the corner frequency f, and the fac-
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Fig. 4. Curve fitting of free-running oscillator phase noise, where the fit-
ted results are: comer frequency fc = 337 kHz; and the factor for intrinsic
noise AQ* = 20 /Hz.

tor AQ by curve fitting [18]:

2
£4Q) = <1 + “’—> =Ll @.1)

Q) @

Fig. 4 shows the results of the FM noise curve fitting.
Then we measured the phase noise of injection signal at
different Q and subharmonic factors. Before it was in-
jected into oscillator, the FM noise coming from
HP8340B was characterized by a Tektronix 2756p spec-
trum analyzer. It should be mentioned that the injected
close-in carrier FM noise can not be measured accurately
for 1/3 and 1/4 subharmonic injection locking because
of very low phase noise levels at such frequencies (i.e.
1.25 GHz and 1.667 GHz). Therefore, an indirect method
was used to measure the phase from the master generator.
In this method, the injected signal was multiplied in fre-
quency and phase noises at the 2nd, 3rd, and 4th har-
monic frequencies were measured; the phase noise of the
multiplied signal was divided by a factor of the square of
the harmonic order to calculate the fundamental phase
noise level [19].

After the characterization of the FM noise of the gen-
erator and the free-running oscillator, the oscillator was
subharmonically injection locked at factors of 1/2, 1/3,
and 1/4. The locking ranges and phase noises at the offset
frequencies of 1 kHz, 10 kHz, 50 kHz and 100 kHz were
measured at different input power levels. Fig. 5(a)-(c)
shows comparisons between the measured and calculated
phase noises which vary with injected signal power at
subharmonic factors of 1/2, 1/3, and 1 /4, respectively.
Fig. 6 shows comparisons of the measured and calculated
FM noise levels with (3.21) as a function of the detuning
frequency, Af = nf,,; — f,. In this case, the subharmonic
factor is 1/4, the input power is —3 dBm. Figs. 5 and 6
show that the measured and analyzed results were in good
agreement.

Fig. 5 shows that the FM noise may decrease with the
increasing injection power level and the noise will almost
remain constant after a certain level, and the minimum
output FM noise is approximately higher than the injected
FM noise by a factor of n2. To explain these phenomena,
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Fig. 5. Comparison of measured and calculated phase noise at offset car-
rier frequencies of 1 kHz, 10 kHz, 50 kHz, and 100 kHz, as a function of
injection signal power. (a) Phase noise of the 2nd order subharmonic in-
jection oscillator. (b) Phase noise of the 3rd order subharmonic injection
oscillator. (c) Phase noise of the 3rd order subharmonic injection oscillator.
The dashed straight-lines represent values of "2£m1(9)~

-100
-8

we can, considering the close-in carrier phase where
<< Aw;/,, simplity (3.21) as

1+ 2
Q

AQ?
Aw%/,,

£/,(@) = n’£, (@) + 4.2)
When Aw,y, is small, the second term in (4.2), namely
the contribution of the intrinsic noise, is dominant. Then

the relation of the output FM noise with the locking range
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Fig. 6. Measured and calculated phase noise of injection locked oscillator
at subharmonic factor of 1/4, as a function of Af = nf,, — f,.

is about 1/x2. Thus, when the input power increases,
Aw,/, increases and the output FM noise decreases. This
phenomenon can be seen in Fig. 7, which shows the FM
noise at the 1 kHz offset carrier varying with the injection
locking range at subharmonic orders n = 2, 3, and 4,
where a solid line represents the true 1 /x relation. When
the input power reaches certain level, Aw,;, becomes
large enough so that the contribution of the second term
is very small and makes £, ,,(?) approach to a minimum
valued n2£inj(Q). This is shown in Fig. 7 as FM noises
diverge from the line of 1/x?, and slowly approach the
dashed lines. These lines represent the first term in (4.2)
at different subharmonic factor, namely, the minimum
limits of FM noise. Therefore, we can coaclude that the

_minimum FM noise degradation factor is n* for an nth’

order subharmonic injection locking oscillator.

In'Fig. 7, those intersections A, B, and C between the
line of 1/x* and the limit lines represent turning points
where the two terms in (4.2) are equal to each other. Re-
ferred to as 3 dB turning points, these points indicate how
much locking range or injection power is needed to obtain
the FM noise level which is 3 dB higher than minimum
level. As discussed above, when the locking range is
smaller than the 3 dB turning point, the FM noise degra-
dation can be improved by an order of square via increas-
ing the injection locking range; when it gets larger than
this point, FM noise will be improved very slowly via
increasing injection locking range and only 3 dB to be
improved. Therefore, by taking advantage of this 3 dB
turning point, we can determine the optimum locking
range or injection power to obtain an optimum FM noise
degradation. The locking range for 3 dB point can be cal-
culated simply through this expression:

V1 + w0, /Q
Ve (@
The expression shows that to reach the 3 dB turning point
of FM noise degradation, a larger locking range is re-
quired for a higher intrinsic noise level Py or a lower in-

jection phase noise. Substituting (2.10) and (3.20), we
can express the injection power needed to reach the 3 dB

Awjy = AQ. @.3)
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Fig. 7. Measured and calculated phase noise at 1 kHz offset carrier fre-
quency of the injection locked oscillator at subharmonic factorof 1/2, 1/3
and 1/4, as a function of the injection locking range.

turning point as

1 wc PN .
oy — ]+ =) —=—
Pi b2n? < Q> £ (DM

where M is the nonlinear network multiplication factor for
the subharmonic injection signal. Clearly, if the multipli-
cation factor is high, the injection power needed to reach
the 3 dB turning point will be small, and the locking range
will also be large which can se¢en from (2.10).

(4.4)

V. CONCLUSION

A method for the accurate analysis of the noise behav-
ior of subharmonic injection locked 1.O’s is presented in
this paper. A general expression for output FM noise cal-
culation was formulated in terms of injected phase noise,
intrinsic noise of the free-running oscillator and the injec-
tion locking range. The theoretical model was verified
through the FM noise measurement of a 5 GHz DRO. The
analyzed and measured results both showed that 1) the
minimum FM noise degradation factor of an nth order
subharmonically locked oscillator is n?%; 2) FM noise deg-
radation can only be improved efficiently by increasing
input power before it reaches 3 dB point. These results
formed the groundwork for a successful design of a sub-
harmonic injection locking oscillator with the following
requirements: large locking range, minimal noise degra-
dation, minimum injection power level. We feel that these
requirements can be satisfied by proper design of a circuit
topology where a high multiplication factor with a low
3 dB noise degradation point can be achieved.
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